NCBI Summary:
This gene encodes a telomere specific protein, TERF2, which is a component of the telomere nucleoprotein complex. This protein is present at telomeres in metaphase of the cell cycle, is a second negative regulator of telomere length and plays a key role in the protective activity of telomeres. While having similar telomere binding activity and domain organization, TERF2 differs from TERF1 in that its N terminus is basic rather than acidic. [provided by RefSeq, Jul 2008]
General function
Cell cycle regulation
Comment
Cellular localization
Nuclear
Comment
Ovarian function
Oocyte maturation
Comment
Telomere Repeat-Binding Factor 2 Is Responsible for the Telomere Attachment to the Nuclear Membrane. Ilicheva NV et al. (2015) Telomeres are nucleoprotein structures that specify ends of eukaryotic chromosomes. They enable complete DNA replication, protect chromosomes from end-to-end fusions, and help organize chromatin structure. These functions are mediated by special telomeric proteins. TRF2 (telomeric repeat-binding factor 2) is an essential component of shelterin, a telomere-binding protein complex. TRF2 induces formation of a special structure of telomeric DNA, counteracts activation of double-strand break response pathway and ataxia telangiectasia mutated kinase pathway at telomeres. Some line of evidence implicates TRF2 in interactions with the nuclear envelope (NE). TRF2 is tightly bound to the nuclear membrane in frog oocytes nucleus, and it was found colocalized with NE or its remnants in mouse cells. Computer analysis of TRF2 amino acid sequence has shown that TRF2 possesses motifs, which resemble rod domain characteristic of intermediate filament proteins. These observations suggest that TRF2 is a good candidate for the attachment of telomeres to the NE in somatic cells.//////////////////