NCBI Summary:
The protein encoded by this gene interacts with thyroid hormone receptors and contains a jumonji domain. It is a candidate histone demethylase and is thought to be a coactivator for key transcription factors. It plays a role in the DNA-damage response pathway by demethylating the mediator of DNA damage checkpoint 1 (MDC1) protein, and is required for the survival of acute myeloid leukemia. Mutations in this gene are associated with Rett syndrome and intellectual disability. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 2015]
General function
Transcription factor
, Epigenetic modifications
Comment
Cellular localization
Nuclear
Comment
Ovarian function
Early embryo development
Comment
Expression pattern of JMJD1C in oocytes and its impact on early embryonic development. Li CH et al. (2016) Cell reprogramming mediated by histone methylation and demethylation is crucial for the activation of the embryonic genome in early embryonic development. In this study, we employed quantitative real-time polymerase chain reaction (qRT-PCR) to detect mRNA levels and expression patterns of all known histone demethylases in early germinal vesicle stage and in vitro-matured metaphase II (MII) oocytes (which are commonly used as donor cells for nuclear transfer). On screening, the Jumonji domain containing 1C (JMJD1C) gene had the highest level of expression and hence was used for subsequent experiments. We also found that JMJD1C was primarily expressed in the nucleus and showed relatively high levels of expression at the 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst stages of embryos developed from MII oocytes fertilized in vitro. Further, we knocked down the JMJD1C gene in MII oocytes using siRNA and monitored the cleavage of zygotes and development of early embryos after in vitro fertilization. The results showed that the zygote cleavage and blastocyst rates of the transfection group were reduced by 57.1 ± 0.07 and 50 ± 0.01% respectively, which were significantly lower than those of the negative control group (P < 0.05). These data suggest that JMJD1C plays a key role in the normal development of early bovine embryos. Our results also provide a theoretical basis for the investigation of the role and molecular mechanism of histone demethylation in the early development of bovine embryos.//////////////////