Comment |
miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1. Xiong F et al. (2016) Granulosa cell (GC) apoptosis has been shown to be involved in follicular atresia, which is a degenerative process in ovarian follicles of mammals. However, the mechanism underlying the regulation of follicular atresia, particularly by microRNAs, is not well known. Real-time PCR (RT-PCR) was used to detect the expression level of miR-22 in healthy follicles (HF), early atretic follicles (EAF), and progressively atretic follicles (PAF). Flow cytometry was performed to assess the apoptosis of mouse granulosa cells (mGCs) treated with miR-22 mimics or negative control (NC) mimics. Regulation of the expression of SIRT1 by miR-22 was evaluated using a luciferase reporter assay system. To investigate the roles of SIRT1 in mGC apoptosis, the endogenous SIRT1 gene in mGCs was knocked down using an siRNA specific for SIRT1. miR-22 was increased during follicular atresia and suppressed granulosa cell apoptosis. The results of the luciferase reporter assay indicated that SIRT1 was a target gene of miR-22. In addition, knockdown of SIRT1 attenuated apoptosis in mGCs. miR-22 inhibits mGC apoptosis by downregulating SIRT1 directly in vitro. This study provides important insights into understanding the regulation mechanism of ovarian follicle atresia.//////////////////
|
Mutations |
1 mutations
Species: human
Mutation name:
type: naturally occurring
fertility: subfertile
Comment: MicroRNA-22-3p is down-regulated in the plasma of Han Chinese patients with premature ovarian failure. Dang Y et al. (2016) To determine whether plasma microRNAs (miRNAs) are differentially expressed between women with and without premature ovarian failure (POF), and to uncover the association of miRNAs with risk of POF. Microarray with real-time polymerase chain reaction validation. University hospital. A total of 140 individuals with premature ovarian failure (POF) and 140 age- and body mass index-matched control subjects of Han Chinese ancestry. None. Relative miRNA expression levels in plasma of POF and control group. Fifty-one differentially expressed miRNAs were identified by chip-based discovery stage between ten patients with POF and ten control subjects, among which nine miRNAs (let-7b-5p, let-7c, miR-15b-5p, miR-22-3p, miR-23a-3p, miR-23b-3p, miR-24-3p, miR-151a-5p, and miR-151b) were selected and validated. The relative expression level of miR-22-3p was significantly down-regulated in POF compared with control subjects. MiR-22-3p yielded a receiver operating characteristic (ROC) curve area of 0.668 (95% confidence interval 0.602-0.733) in discriminating POF from controls. In addition, logistic binary regression analysis and linear regression analysis showed the miR-22-3p to be a protective factor for POF (odds ratio 0.766, 95% CI 0.643-0.912) and negatively associated with serum FSH. Furthermore, bioinformatics analysis indicated that the target function of miR-22-3p was involved in apoptosis, endocytosis, and tumorigenesis. Mir-22-3p showed a lower expression level in POF and was modestly effective in distinguishing POF from control subjects. The decreased expression of miR-22-3p in plasma of POF may reflect the diminished ovarian reserve and be a consequence of the pathologic process of POF.//////////////////
|