Comment |
Staufen2-mediated RNA recognition and localization requires combinatorial action of multiple domains. Heber S et al. (2019) Throughout metazoans, Staufen (Stau) proteins are core factors of mRNA localization particles. They consist of three to four double-stranded RNA binding domains (dsRBDs) and a C-terminal dsRBD-like domain. Mouse Staufen2 (mStau2)-like Drosophila Stau (dmStau) contains four dsRBDs. Existing data suggest that only dsRBDs 3-4 are necessary and sufficient for mRNA binding. Here, we show that dsRBDs 1 and 2 of mStau2 bind RNA with similar affinities and kinetics as dsRBDs 3 and 4. While RNA binding by these tandem domains is transient, all four dsRBDs recognize their target RNAs with high stability. Rescue experiments in Drosophila oocytes demonstrate that mStau2 partially rescues dmStau-dependent mRNA localization. In contrast, a rescue with mStau2 bearing RNA-binding mutations in dsRBD1-2 fails, confirming the physiological relevance of our findings. In summary, our data show that the dsRBDs 1-2 play essential roles in the mRNA recognition and function of Stau-family proteins of different species.//////////////////
RNA- binding protein Stau2 is important for spindle integrity and meiosis progression in mouse oocytes. Cao Y et al. (2016) Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes.//////////////////
|