General Comment |
Mol Cell. 2015 Jun 4;58(5):743-54. doi: 10.1016/j.molcel.2015.03.031. Epub 2015 Apr 30.
Cancer/Testis Antigen PASD1 Silences the Circadian Clock.
Michael AK1, Harvey SL1, Sammons PJ1, Anderson AP2, Kopalle HM1, Banham AH2, Partch CL3.
Author information
Abstract
The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms.
Copyright © 2015 Elsevier Inc. All rights reserved.
NCBI Summary:
This gene encodes a protein that is thought to function as a transcription factor. The protein is a cancer-associated antigen that can stimulate autologous T-cell responses, and it is therefore considered to be a potential immunotherapeutic target for the treatment of various hematopoietic malignancies, including diffuse large B-cell lymphoma. [provided by RefSeq, May 2010]
|