Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

inner mitochondrial membrane peptidase subunit 2 OKDB#: 5411
 Symbols: IMMP2L Species: human
 Synonyms: IMP2, IMP2-LIKE, IMMP2L-IT1  Locus: 7q31.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: This gene encodes a protein involved in processing the signal peptide sequences used to direct mitochondrial proteins to the mitochondria. The encoded protein resides in the mitochondria and is one of the necessary proteins for the catalytic activity of the mitochondrial inner membrane peptidase (IMP) complex. Two variants that encode the same protein have been described for this gene. [provided by RefSeq, Sep 2011]
General function Enzyme
Comment
Cellular localization Mitochondrial
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization
Comment
Follicle stages
Comment
Phenotypes
Mutations 2 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: A mutation in the inner mitochondrial membrane peptidase 2-like gene (Immp2l) affects mitochondrial function and impairs fertility in mice. Lu B et al. (2008) The mitochondrion is involved in energy generation, apoptosis regulation, and calcium homeostasis. Mutations in genes involved in mitochondrial processes often result in a severe phenotype or embryonic lethality, making the study of mitochondrial involvement in aging, neurodegeneration, or reproduction challenging. Using a transgenic insertional mutagenesis strategy, we generated a mouse mutant, Immp2lTg(Tyr)979Ove, with a mutation in the inner mitochondrial membrane peptidase 2-like (Immp2l) gene. The mutation affected the signal peptide sequence processing of mitochondrial proteins cytochrome c1 and glycerol phosphate dehydrogenase 2. The inefficient processing of mitochondrial membrane proteins perturbed mitochondrial function so that mitochondria from mutant mice manifested hyperpolarization, higher than normal superoxide ion generation, and higher levels of ATP. Homozygous Immp2lTg(Tyr)979Ove females were infertile due to defects in folliculogenesis and ovulation, whereas mutant males were severely subfertile due to erectile dysfunction. The data suggest that the high superoxide ion levels lead to a decrease in the bioavailability of nitric oxide and an increase in reactive oxygen species stress, which underlies these reproductive defects. The results provide a novel link between mitochondrial dysfunction and infertility and suggest that superoxide ion targeting agents may prove useful for treating infertility in a subpopulation of infertile patients.//////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: The Immp2l mutation causes ovarian aging through ROS-Wnt/β-catenin-estrogen pathway: preventive effect of melatonin. He Q et al. (2020) Mitochondria play important roles in ovarian follicle development. Mitochondrial dysfunction, including mitochondrial gene deficiency, impairs the ovarian development. Here, we explored the role and mechanism of mitochondrial inner membrane gene Immp2l in ovarian follicle growth and development. Our results revealed that the female Immp2l-/- mice were infertile, while the Immp2l+/- mice were normal. Body and ovarian weights were reduced in the female Immp2l-/- mice, ovarian follicle growth and development were stunted in the secondary follicle stage. Although a few ovarian follicles were ovulated, the oocytes were not fertilized due to mitochondrial dysfunction. Increased oxidative stress, decreased estrogen levels, and altered genes expression of Wnt/β-catenin and steroid hormone synthesis pathways were observed in 28-day-old Immp2l-/- mice. The Immp2l mutation accelerated ovarian aging process, as no ovarian follicles were detected in age of 5 months in Immp2l-/- mice. All the aforementioned changes in the Immp2l-/- mice were reversed by administration of antioxidant melatonin to the Immp2l-/- mice. Furthermore, our in vitro study using Immp2l knockdown granulosa cells confirmed that the Immp2l downregulation induced granulosa cell aging by enhancing ROS levels, suppressing Wnt16, increasing β-catenin and decreasing steroid hormone synthesis gene cyp19a1 and estrogen levels, accompanied by an increase in the aging phenotype of granulosa cells. Melatonin treatment delayed granulosa cell aging progression. Taken together, Immp2l causes ovarian aging through the ROS-Wnt/β-catenin-estrogen (cyp19a1) pathway, which can be reversed by melatonin treatment.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Nov. 2, 2016, 4:11 p.m. by: system   email:
home page:
last update: July 14, 2020, 1:37 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form