Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

calmodulin binding transcription activator 2 OKDB#: 5427
 Symbols: CAMTA2 Species: human
 Synonyms:  Locus: 17p13.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene is a member of the calmodulin-binding transcription activator protein family. Members of this family share a common domain structure that consists of a transcription activation domain, a DNA-binding domain, and a calmodulin-binding domain. The encoded protein may be a transcriptional coactivator of genes involved in cardiac growth. Alternate splicing results in multiple transcript variants.[provided by RefSeq, Jan 2010]
General function DNA binding, Transcription factor
Comment
Cellular localization Nuclear
Comment
Ovarian function Follicle atresia
Comment Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Terenina E et al. (2016) Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well-understood. The objective of this project was to analyse global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed using 9216 cDNAs microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. One thousand six hundred and eighty four significantly regulated genes were differentially regulated between small healthy follicles and small atretic follicles. Among them, two hundred and eighty seven genes had a fold-change higher than 2 between the two follicle groups. Eleven genes (DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than 5 between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data enlightened 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis or tumor suppressors INHBB, HNF4, CLU, different interleukins (IL5, IL24), TNF-associated receptor (TNFR1), and cytochrome-c oxidase (COX) were suggested as playing an important role in porcine atresia. Present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.//////////////////
Expression regulated by
Comment
Ovarian localization
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Dec. 14, 2016, 10:01 a.m. by: system   email:
home page:
last update: Dec. 14, 2016, 10:02 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form