Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

TGF-beta activated kinase 1 (MAP3K7) binding protein 1 OKDB#: 5441
 Symbols: TAB1 Species: human
 Synonyms: 3'-Tab1, MAP3K7IP1  Locus: 22q13.1 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene was identified as a regulator of the MAP kinase kinase kinase MAP3K7/TAK1, which is known to mediate various intracellular signaling pathways, such as those induced by TGF beta, interleukin 1, and WNT-1. This protein interacts and thus activates TAK1 kinase. It has been shown that the C-terminal portion of this protein is sufficient for binding and activation of TAK1, while a portion of the N-terminus acts as a dominant-negative inhibitor of TGF beta, suggesting that this protein may function as a mediator between TGF beta receptors and TAK1. This protein can also interact with and activate the mitogen-activated protein kinase 14 (MAPK14/p38alpha), and thus represents an alternative activation pathway, in addition to the MAPKK pathways, which contributes to the biological responses of MAPK14 to various stimuli. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008]
General function Intracellular signaling cascade, Enzyme
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Early embryo development
Comment The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal-to-zygotic transition. Yang Y et al. (2017) The functional role of the ubiquitin-proteasome pathway during maternal-to-zygotic transition (MZT) remains to be elucidated. Here we show that the E3 ubiquitin ligase, Rnf114, is highly expressed in mouse oocytes and that knockdown of Rnf114 inhibits development beyond the two-cell stage. To study the underlying mechanism, we identify its candidate substrates using a 9,000-protein microarray and validate them using an in vitro ubiquitination system. We show that five substrates could be degraded by RNF114-mediated ubiquitination, including TAB1. Furthermore, the degradation of TAB1 in mouse early embryos is required for MZT, most likely because it activates the NF-κB pathway. Taken together, our study uncovers that RNF114-mediated ubiquitination and degradation of TAB1 activate the NF-κB pathway during MZT, and thus directly link maternal clearance to early embryo development.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Jan. 18, 2017, 9:35 a.m. by: system   email:
home page:
last update: Jan. 18, 2017, 9:37 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form