Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

microRNA 96 OKDB#: 5448
 Symbols: MIR96 Species: human
 Synonyms: DFNA50, MIRN96, miR-96, miRNA96, hsa-mir-96  Locus: 7q32.2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
General function RNA metabolism
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Steroid metabolism, Luteinization
Comment The adequate corpus luteum: miR-96 promotes luteal cell survival and progesterone production. Mohammed BT et al. (2017) Inadequate progesterone production from the corpus luteum is associated with pregnancy loss. Data available in model species suggest important roles of miRNAs in luteal development and maintenance. To comprehensively investigate the involvement of miRNAs during the ovarian follicle-luteal transition. The effects of specific miRNAs on survival and steroid production by human luteinized granulosa cells (hLGCs) were tested using specific miRNA inhibitors. Candidate miRNAs were first identified through microarray analyses of follicular and luteal tissues in a bovine model. UK academic institution associated with teaching hospital. hLGCs were obtained by standard transvaginal follicular fluid aspiration from 35 women undergoing assisted conception. Inhibition of candidate miRNAs in vitro. Levels of miRNAs, mRNAs, FOXO1 protein, apoptosis and steroids were measured in tissues and/or cultured cells. Two specific miRNA clusters, miR-183-96-182 and miR-212-132, were dramatically increased in luteal relative to follicular tissues. miR-96 and miR-132 were the most upregulated miRNAs within each cluster. Database analyses identified FOXO1 as a putative target of both these miRNAs. In cultured hLGCs, inhibition of miR-96 increased apoptosis and FOXO1 protein levels, and decreased progesterone production. These effects were prevented by siRNA-mediated downregulation of FOXO1. In bovine luteal cells, miR-96 inhibition also led to increases in apoptosis and FOXO1 protein levels. miR-96 targets FOXO1 to regulate luteal development through effects on cell survival and steroid production. The miR-183-96-182 cluster could provide a novel target for the manipulation of luteal function.//////////////////
Expression regulated by
Comment The adequate corpus luteum: miR-96 promotes luteal cell survival and progesterone production. Mohammed BT et al. (2017) Inadequate progesterone production from the corpus luteum is associated with pregnancy loss. Data available in model species suggest important roles of miRNAs in luteal development and maintenance. To comprehensively investigate the involvement of miRNAs during the ovarian follicle-luteal transition. The effects of specific miRNAs on survival and steroid production by human luteinized granulosa cells (hLGCs) were tested using specific miRNA inhibitors. Candidate miRNAs were first identified through microarray analyses of follicular and luteal tissues in a bovine model. UK academic institution associated with teaching hospital. hLGCs were obtained by standard transvaginal follicular fluid aspiration from 35 women undergoing assisted conception. Inhibition of candidate miRNAs in vitro. Levels of miRNAs, mRNAs, FOXO1 protein, apoptosis and steroids were measured in tissues and/or cultured cells. Two specific miRNA clusters, miR-183-96-182 and miR-212-132, were dramatically increased in luteal relative to follicular tissues. miR-96 and miR-132 were the most upregulated miRNAs within each cluster. Database analyses identified FOXO1 as a putative target of both these miRNAs. In cultured hLGCs, inhibition of miR-96 increased apoptosis and FOXO1 protein levels, and decreased progesterone production. These effects were prevented by siRNA-mediated downregulation of FOXO1. In bovine luteal cells, miR-96 inhibition also led to increases in apoptosis and FOXO1 protein levels. miR-96 targets FOXO1 to regulate luteal development through effects on cell survival and steroid production. The miR-183-96-182 cluster could provide a novel target for the manipulation of luteal function.//////////////////
Ovarian localization Luteal cells, Follicular Fluid
Comment Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Martinez RM et al. (2018) Encapsulated microRNAs (i.e., miRNAs within the extracellular vesicles, i.e., EV-miRNAs) have been detected in follicular fluid in both animal and human studies and different profiles have been associated with IVF cycle characteristics. However, limited studies to date have investigated other IVF outcomes, including fertilization status and embryo quality on day three". In this cohort, we performed a cross-sectional analysis on 126 women who contributed follicular fluid from a single follicle during a single IVF cycle. One hundred and ninety-two EV-miRNAs were assessed by univariable fold-change and multivariable logistic regression analyses. Hsa-miR-92a and hsa-miR-130b, were over-expressed in follicular fluid samples from oocytes that failed to fertilize compared to those that were normally fertilized. Additionally, hsa-miR-888 was over-expressed and hsa-miR-214 and hsa-miR-454 were under-expressed in samples that resulted in impaired day-3 embryo quality compared to top-quality day-3 embryos. After adjusting for confounders as BMI, smoking and total motile sperm, associations of these EV-miRNAs remained significant. In-silico KEGG pathway analyses assigned the identified EV-miRNAs to pathways of follicular growth and development, cellular signaling, oocyte meiosis, and ovarian function. Our findings suggest that EV-miRNAs may play a role in pathways of ovarian function and follicle development, which could be essential for understanding the molecular mechanisms that could lead to a successful pregnancy and birth.//////////////////
Follicle stages Corpus luteum
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: April 8, 2017, 8:54 a.m. by: system   email:
home page:
last update: Nov. 26, 2018, 1:19 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form