Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

microRNA 141 OKDB#: 5467
 Symbols: MIR141 Species: human
 Synonyms: MIRN141, mir-141  Locus: 12p13.31 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
General function RNA processing, RNA binding
Comment
Cellular localization
Comment
Ovarian function Follicle atresia
Comment MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Li D et al. (2017) The polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disorder. MicroRNAs negatively regulate the expression of target genes at posttranscriptional level by binding to the 3' untranslated region of target genes. Our previous study showed that miR-141-3p was dramatically decreased in the ovaries of rat PCOS models. In this study, we aimed to characterize the target of miR-141-3p in rat ovarian granulosa cells. 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay showed that cell viability was dramatically increased when miR-141-3p was overexpressed but was decreased when miR-141-3p was interfered. Flow cytometry showed that cell apoptotic rate was dramatically decreased when miR-141-3p was overexpressed but was increased when miR-141-3p was interfered. Bioinformatics analysis predicted that death-associated protein kinase 1 (DAPK1) might be the target gene of miR-141-3p because the 3' untranslated region of DAPK1 contains sequences complementary to microRNA-141-3p. Transfection with miR-141-3p mimics and inhibitor into granulosa cells showed that both DAPK1 mRNA and protein levels were negatively correlated with miR-141-3p level. Dual-luciferase reporter assay established that DAPK1 was the target of miR-141-3p. Taken together, our data indicate that miR-141-3p may inhibit ovarian granulosa cell apoptosis via targeting DAPK1 and is involved in the etiology of PCOS.//////////////////
Expression regulated by
Comment
Ovarian localization Granulosa
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: May 30, 2017, 9:36 a.m. by: system   email:
home page:
last update: May 30, 2017, 9:37 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form