NCBI Summary:
This gene encodes a multifunctional protein that binds ubiquitin and regulates activation of the nuclear factor kappa-B (NF-kB) signaling pathway. The protein functions as a scaffolding/adaptor protein in concert with TNF receptor-associated factor 6 to mediate activation of NF-kB in response to upstream signals. Alternatively spliced transcript variants encoding either the same or different isoforms have been identified for this gene. Mutations in this gene result in sporadic and familial Paget disease of bone. [provided by RefSeq, Mar 2009]
General function
Comment
Cellular localization
Comment
The role of androgen in autophagy of granulosa cells from PCOS. Li X et al. (2020) Hyperandrogenism is one of the most common causes for anovulation in women and increases the risk for metabolic disorder in PCOS patients. Autophagy plays an important role in dysfunction of endocrine and anovulation. However, the relationship between hyperandrogenism and autophagy in human granulosa cells of PCOS patients remains unclear. By collecting granulosa cells from PCOS patients and non-PCOS patients, we found that the abundance of autophagy-related genes ATG5, ATG7, BECN1 mRNA and the ratio of autophagy marker protein light chain 3B II/I (LC3 II/I) were significantly increased whereas the abundance of the autophagy substrate SQSTM1/p62 was decreased in ovarian granulosa cells from PCOS patients. Furthermore, we demonstrated that BECN1 mRNA abundance in human granulosa cells positively correlated with the basal level of serum total testosterone and androgen up-regulated the abundance of BECN1 mRNA and the ratio of LC3II/LC3I in a dose-dependent manner in cultured granulosa cells. These observations indicated that androgen-induced activation of autophagy may play an important role in the development of PCOS and to explore the autophagy mechanisms involved in PCOS yield new insight into the pathophysiology and therapy of the disorder.//////////////////
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization
Granulosa
Comment
Follicle stages
Secondary
Comment
Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Meng L et al. (2018) There is general agreement that granulosa cell apoptosis is the cause of antral follicle attrition. Less clear is whether this pathway is also activated in case of preantral follicle degeneration, as several reports mention that the incidence of granulosa cell apoptosis in preantral follicles is negligible. Our objective is therefore to determine which cell-death pathways are involved in preantral and antral follicular degeneration.Atretic preantal and antral follicles were investigated using immunohistochemistry and laser-capture micro-dissection followed by qRT-PCR. Microtubule-associated light-chain protein 3 (LC3), sequestosome 1 (SQSTM1/P62), Beclin1, autophagy-related protein 7 (ATG7) and cleaved caspase 3 (cCASP3) were used as markers for autophagy and apoptosis, respectively. P62 immunostaining was far less intense in granulosa cells of atretic compared to healthy preantral follicles, while no difference in LC3 and BECLIN1 immunostaining intensity was observed. This difference in P62 immunostaining was not observed in atretic antral follicles. mRNA levels of LC3 and p62 were not different between healthy and atretic (pre)antral follicles. ATG7 immunostaining was observed in granulosa cells of preantral atretic follicles, not in granulosa cells of degenerating antral follicles. The number of cCASP3 positive cells was negligible in preantral atretic follicles, while numerous in atretic antral follicles. Taken together, we conclude that preantral and antral follicular atresia is the result of activation of different cell-death pathways as antral follicular degeneration is initiated by massive granulosa cell apoptosis, while preantral follicular atresia occurs mainly via enhanced granulosa cell autophagy.//////////////////
Phenotypes
PCO (polycystic ovarian syndrome)
Mutations
1 mutations
Species: mouse
Mutation name: type: null mutation fertility: fertile Comment: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Komatsu M et al. (2008) Inactivation of constitutive autophagy results in formation of cytoplasmic protein inclusions and leads to liver injury and neurodegeneration, but the details of abnormalities related to impaired autophagy are largely unknown. Here we used mouse genetic analyses to define the roles of autophagy in the aforementioned events. We report that the ubiquitin- and LC3-binding protein "p62" regulates the formation of protein aggregates and is removed by autophagy. Thus, genetic ablation of p62 suppressed the appearance of ubiquitin-positive protein aggregates in hepatocytes and neurons, indicating that p62 plays an important role in inclusion body formation. Moreover, loss of p62 markedly attenuated liver injury caused by autophagy deficiency, whereas it had little effect on neuronal degeneration. Our findings highlight the unexpected role of homeostatic level of p62, which is regulated by autophagy, in controlling intracellular inclusion body formation, and indicate that the pathologic process associated with autophagic deficiency is cell-type specific.//////////////////