Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

cell division cycle and apoptosis regulator 1 OKDB#: 5568
 Symbols: CCAR1 Species: human
 Synonyms:  Locus: 10q21.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Kim JH et al. (2008) DNA-bound transcription factors recruit many coactivator proteins to remodel chromatin and activate transcription. The Mediator complex is believed to recruit RNA polymerase II to most protein-encoding genes. It is generally assumed that interaction of Mediator subunits with DNA-binding transcription factors is responsible for Mediator recruitment to promoters. However, we report here that Mediator recruitment by nuclear receptors (NR) requires a coactivator protein, CCAR1 (cell-cycle and apoptosis regulator 1). CCAR1 associates with components of the Mediator and p160 coactivator complexes and is recruited to endogenous NR target genes in response to the appropriate hormone. Reduction of endogenous CCAR1 levels inhibited hormone-induced expression of endogenous NR target genes, hormone-induced recruitment of Mediator components and RNA polymerase II to target gene promoters, and estrogen-dependent growth of breast cancer cells. Thus, CCAR1 regulates expression of key proliferation-inducing genes. CCAR1 also functions as a p53 coactivator, suggesting a broader role in transcriptional regulation.//////////////////

General function DNA binding, Transcription factor
Comment
Cellular localization Nuclear
Comment
Ovarian function Early embryo development
Comment
Expression regulated by IGF2BP2
Comment RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation. Liu HB et al. (2019) A number of genes involved in zygotic genome activation (ZGA) have been identified, but the RNA-binding maternal factors that are directly related to ZGA in mice remain unclear. The present study shows that maternal deletion of Igf  2bp2 (also commonly known as Imp2) in mouse embryos causes early embryonic developmental arrest in vitro at the 2-cell-stage. Transcriptomics and proteomics analyses of 2-cell-stage embryos in mice reveal that deletion of IMP2 downregulates the expression of Ccar1 and Rps14, both of which are required for early embryonic developmental competence. IGF2, a target of IMP2, when added in culture media, increases the proportion of wild-type embryos that develop successfully to the blastocyst stage: from 29% in untreated controls to 65% (50 × 10-9 m IGF2). Furthermore, in an experiment related to embryo transfer, foster mothers receiving IGF2-treated embryos deliver more pups per female than females who receive untreated control embryos. In clinically derived human oocytes, the addition of IGF2 to the culture media significantly enhances the proportion of embryos that develop successfully. Collectively, the findings demonstrate that IMP2 is essential for the regulation and activation of genes known to be involved in ZGA and reveal the potential embryonic development-related utility of IGF2 for animal biotechnology and for assisted reproduction in humans.//////////////////
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Aug. 1, 2018, 2:30 p.m. by: system   email:
home page:
last update: Aug. 14, 2019, 12:36 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form