Comment |
Canonical Wnt/β-catenin activity and differential epigenetic marks direct sexually dimorphic regulation of Irx3 and Irx5 in developing gonads. Koth ML et al. (2020) Members of the Iroquois B (IrxB) homeodomain cluster genes, specifically Irx3 and Irx5, are critical for heart, limb, and bone development. Recently, we reported their importance for oocyte and follicle survival within the developing ovary. Irx3 and Irx5 expression begins after sex determination in the ovary but remains absent in the fetal testis. Mutually antagonistic molecular signals ensure ovary vs testis differentiation with canonical Wnt/β-catenin signals paramount for promoting the ovary pathway. Notably, few direct downstream targets have been identified. We report that Wnt/β-catenin signaling directly stimulates Irx3 and Irx5 transcription in the developing ovary. Using in silico analysis of ATAC- and ChIP-Seq databases in conjunction with gonad explant transfection assays, we identified TCF/LEF binding sequences within two distal enhancers of the IrxB locus that promote β-catenin-responsive ovary expression. Meanwhile, Irx3 and Irx5 transcription is suppressed within the developing testis by the presence of H3K27me3 on these same sites. Thus, we resolved sexually dimorphic regulation of Irx3 and Irx5 via epigenetic and β-catenin transcriptional control where their ovarian presence promotes oocyte and follicle survival vital for future ovarian health.//////////////////
|
Mutations |
2 mutations
Species: mouse
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. Garcia-Ortiz JE et al. (2009) Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women. In animal models, Foxl2 is required for maintenance, and possibly induction, of female sex determination independently of other critical genes, e.g., Rspo1. Here we report expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit. Following Foxl2 loss, early testis genes (including Inhbb, Dhh, and Sox9) and several novel ovarian genes were consistently dysregulated during embryonic development. In the absence of Foxl2, expression changes affecting a large fraction of pathways were opposite those observed in Wnt4-null ovaries, reinforcing the notion that these genes have complementary actions in ovary development. Loss of one copy of Foxl2 revealed strong gene dosage sensitivity, with molecular anomalies that were milder but resembled ovaries lacking both Foxl2 alleles. Furthermore, a Foxl2 transgene disrupted embryonic testis differentiation and increased the levels of key female markers. The results, including a comprehensive principal component analysis, 1) support the proposal of dose-dependent Foxl2 function and anti-testis action throughout ovary differentiation; and 2) identify candidate genes for roles in sex determination independent of FOXL2 (e.g., the transcription factors IRX3 and ZBTB7C) and in the generation of the ovarian reserve downstream of FOXL2 (e.g., the cadherin-domain protein CLSTN2 and the sphingomyelin synthase SGMS2). The gene inventory is a first step toward the identification of the full range of pathways with partly autonomous roles in ovary development, and thus provides a framework to analyze the genetic bases of female fertility.//////////////////
Species: mouse
Mutation name:
type: null mutation
fertility: subfertile
Comment: IRX3 and IRX5 Collaborate During Ovary Development and Follicle Formation to Establish Responsive Granulosa Cells in the Adult Mouse. Fu A et al. (2020) Healthy development of ovarian follicles depends on appropriate interactions and function between oocytes and their surrounding granulosa cells. Previously, we showed that double knockout of Irx3 and Irx5 (Irx3/5 DKO) in mice resulted in abnormal follicle morphology and follicle death. Further, female mouse models of individual Irx3 or Irx5 knockouts were both subfertile but with distinct defects. Notably, the expression profile of each gene suggests independent roles for each, first they are colocalized in pre-granulosa cells during development that then progresses to include oocyte expression during germline nest breakdown and primordial follicle formation. Thereafter, their expression patterns diverge between oocytes and granulosa cells coinciding with the formulation and maturation of intimate oocyte-granulosa cell interactions. The objective of this study was to investigate the contributions of Irx5 and somatic cell-specific expression of Irx3 during ovarian development. Our results show that Irx3 and Irx5 contribute to female fertility through different mechanisms and that Irx3 expression in somatic cells is important for oocyte quality and survival. Based on evaluation of a series of genetically modified mouse models, we conclude that IRX3 and IRX5 collaborate in the same cells and then in neighboring cells to foster a healthy and responsive follicle. Long after these two factors have extinguished, their legacy enables these intercellular connections to mature and respond to extracellular signals to promote follicle maturation and ovulation.//////////////////
|