Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

dolichyl-phosphate N-acetylglucosaminephosphotransferase 1 OKDB#: 5592
 Symbols: DPAGT1 Species: human
 Synonyms: GPT, ALG7, DGPT, G1PT, UAGT, UGAT, CDG1J, CMS13, DPAGT, CDG-Ij, CMSTA2, DPAGT2, D11S366  Locus: 11q23.3 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: The protein encoded by this gene is an enzyme that catalyzes the first step in the dolichol-linked oligosaccharide pathway for glycoprotein biosynthesis. This enzyme belongs to the glycosyltransferase family 4. This protein is an integral membrane protein of the endoplasmic reticulum. The congenital disorder of glycosylation type Ij is caused by mutation in the gene encoding this enzyme. [provided by RefSeq, Jul 2008]
General function Enzyme
Comment
Cellular localization
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 3 mutations

Species: C. elegans
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase is indispensable for oogenesis, oocyte-to-embryo transition, and larval development of the nematode Caenorhabditis elegans. Kanaki N et al. (2018) N-linked glycosylation of proteins is the most common post-translational modification of proteins. The enzyme UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) catalyses the first step of N-glycosylation, and DPAGT1 knockout is embryonic lethal in mice. In this study, we identified the sole orthologue (algn-7) of the human DPAGT1 in the nematode C. elegans. The gene activity was disrupted by RNAi and deletion mutagenesis, which resulted in larval lethality, defects in oogenesis and oocyte-to-embryo transition. Endomitotic oocytes, abnormal fusion of pronuclei, abnormal AB cell rotation, disruption of permeation barriers of eggs, and abnormal expression of chitin and chitin synthase in oocytes and eggs were the typical phenotypes observed. The results indicate that N-glycosylation is indispensable for these processes. We further screened an N-glycosylated protein database of C. elegans, and identified 456 germline-expressed genes coding N-glycosylated proteins. By examining RNAi phenotypes, we identified five germline-expressed genes showing similar phenotypes to the algn-7 (RNAi) animals. They were ribo-1, stt-3, ptc-1, ptc-2, and vha-19. We identified known congenital disorders of glycosylation (CDG) genes (ribo-1 and stt-3) and a recently found CDG gene (vha-19). The results show that phenotype analyses using the nematode could be a powerful tool to detect new CDG candidate genes and their associated gene networks.//////////////////

Species: mouse
Mutation name:
type: null mutation
fertility: embryonic lethal
Comment:

Species: mouse
Mutation name:
type: naturally occurring
fertility: subfertile
Comment: DPAGT1-Mediated Protein N-Glycosylation Is Indispensable for Oocyte and Follicle Development in Mice. Li H et al. (2020) Post-translational modification of proteins by N-linked glycosylation is crucial for many life processes. However, the exact contribution of N-glycosylation to mammalian female reproduction remains largely undefined. Here, DPAGT1, the enzyme that catalyzes the first step of protein N-glycosylation, is identified to be indispensable for oocyte development in mice. Dpagt1 missense mutation (c. 497A>G; p. Asp166Gly) causes female subfertility without grossly affecting other functions. Mutant females ovulate fewer eggs owing to defective development of growing follicles. Mutant oocytes have a thin and fragile zona pellucida (ZP) due to the reduction in glycosylation of ZP proteins, and display poor developmental competence after fertilization in vitro. Moreover, completion of the first meiosis is accelerated in mutant oocytes, which is coincident with the elevation of aneuploidy. Mechanistically, transcriptomic analysis reveals the downregulation of a number of transcripts essential for oocyte meiotic progression and preimplantation development (e.g., Pttgt1, Esco2, Orc6, and Npm2) in mutant oocytes, which could account for the defects observed. Furthermore, conditional knockout of Dpagt1 in oocytes recapitulates the phenotypes observed in Dpagt1 mutant females, and causes complete infertility. Taken together, these data indicate that protein N-glycosylation in oocytes is essential for female fertility in mammals by specific control of oocyte development.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Nov. 29, 2018, 2:48 p.m. by: system   email:
home page:
last update: July 29, 2020, 1:30 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form