General Comment |
GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Meyer RC et al. (2013) GPR37 (also known as Pael-R) and GPR37L1 are orphan G protein-coupled receptors that are almost exclusively expressed in the nervous system. We screened these receptors for potential activation by various orphan neuropeptides, and these screens yielded a single positive hit: prosaptide, which promoted the endocytosis of GPR37 and GPR37L1, bound to both receptors and activated signaling in a GPR37- and GPR37L1-dependent manner. Prosaptide stimulation of cells transfected with GPR37 or GPR37L1 induced the phosphorylation of ERK in a pertussis toxin-sensitive manner, stimulated (35)S-GTPĪ³S binding, and promoted the inhibition of forskolin-stimulated cAMP production. Because prosaptide is the active fragment of the secreted neuroprotective and glioprotective factor prosaposin (also known as sulfated glycoprotein-1), we purified full-length prosaposin and found that it also stimulated GPR37 and GPR37L1 signaling. Moreover, both prosaptide and prosaposin were found to protect primary astrocytes against oxidative stress, with these protective effects being attenuated by siRNA-mediated knockdown of endogenous astrocytic GPR37 or GPR37L1. These data reveal that GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin.//////////////////
|
Comment |
G-protein coupled receptor 37L1 regulates renal sodium transport and blood pressure. Zheng X et al. (2018) GPCRs in the kidney regulate the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Abnormalities in renal epithelial ion transport play important roles in the pathogenesis of essential hypertension. The orphan G protein-coupled receptor 37L1 (GPR37L1), also known as ETBR-LP2, is expressed in several regions in the brain, but its expression profile and function in peripheral tissues are poorly understood. We found that GPR37L1 mRNA expression is highest in the brain, followed by the stomach, heart, testis, and ovary, with moderate expression in the kidney, pancreas, skeletal muscle, liver, lung, and spleen. Immunofluorescence analyses revealed the expression of GPR37L1 in specific regions within some organs. In the kidney, GPR37L1 is expressed in the apical membrane of renal proximal tubule cells. In human renal proximal tubule cells, the transient expression of GPR37LI increased intracellular sodium while the silencing of GPR37LI decreased intracellular sodium. Inhibition of NHE3 activity abrogated the GPR37L1-mediated increase in intracellular sodium. Renal-selective silencing of Gpr37l1 in mice increased urine output and sodium excretion and decreased systolic and diastolic blood pressures. The renal-selective silencing of GPR37L1 decreased the protein expression of NHE3 but not the expression of Na+/K+-ATPase or sodium/glucose cotransporter 2. Our findings show that in the kidney, GPR37L1 participates in renal proximal tubule luminal sodium transport and regulation of blood pressure by increasing the renal expression and function of NHE3 by decreasing cAMP production. The role of GPR37L1 expressed in specific cell types in organs other than the kidney, remains to be determined.//////////////////
|