Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

CD38 molecule OKDB#: 5667
 Symbols: CD38 Species: human
 Synonyms: ADPRC1, ADPRC 1  Locus: 4p15.32 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD+ Pools. Chmielewski JP et al. (2019) Tumor cells require increased rates of cell metabolism to generate the macromolecules necessary to sustain proliferation. They rely heavily on NAD+ as a cofactor for multiple metabolic enzymes in anabolic and catabolic reactions. NAD+ also serves as a substrate for PARPs, sirtuins, and cyclic ADP-ribose synthases. Dysregulation of the cyclic ADP-ribose synthase CD38, the main NAD'ase in cells, is reported in multiple cancer types. This study demonstrates a novel connection between CD38, modulation of NAD+, and tumor cell metabolism in prostate cancer. CD38 expression inversely correlates with prostate cancer progression. Expressing CD38 in prostate cancer cells lowered intracellular NAD+, resulting in cell-cycle arrest and expression of p21Cip1 (CDKNA1). In parallel, CD38 diminishes glycolytic and mitochondrial metabolism, activates AMP-activated protein kinase (AMPK), and inhibits fatty acid and lipid synthesis. Pharmacologic inhibition of nicotinamide phosphoribosyltransferase (NAMPT) mimicked the metabolic consequences of CD38 expression, demonstrating similarity between CD38 expression and NAMPT inhibition. Modulation of NAD+ by CD38 also induces significant differential expression of the transcriptome, producing a gene expression signature indicative of a nonproliferative phenotype. Altogether, in the context of prostate cancer, the data establish a novel role for the CD38-NAD+ axis in the regulation of cell metabolism and development.Implications: This research establishes a mechanistic connection between CD38 and metabolic control. It also provides the foundation for the translation of agents that modulate NAD+ levels in cancer cells as therapeutics. Mol Cancer Res; 16(11); 1687-700. ©2018 AACR.//////////////////

NCBI Summary: The protein encoded by this gene is a non-lineage-restricted, type II transmembrane glycoprotein that synthesizes and hydrolyzes cyclic adenosine 5'-diphosphate-ribose, an intracellular calcium ion mobilizing messenger. The release of soluble protein and the ability of membrane-bound protein to become internalized indicate both extracellular and intracellular functions for the protein. This protein has an N-terminal cytoplasmic tail, a single membrane-spanning domain, and a C-terminal extracellular region with four N-glycosylation sites. Crystal structure analysis demonstrates that the functional molecule is a dimer, with the central portion containing the catalytic site. It is used as a prognostic marker for patients with chronic lymphocytic leukemia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2015]
General function Enzyme
Comment
Cellular localization Secreted, Cytoplasmic, Plasma membrane
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte, Granulosa
Comment Quantifying the cellular NAD+ metabolome using a tandem liquid chromatography mass spectrometry approach. Bustamante S et al. (2019) Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as a key hydride transfer coenzyme for several oxidoreductases. It is also the substrate for intracellular secondary messenger signalling by CD38 glycohydrolases, DNA repair by poly(adenosine diphosphate ribose) polymerase, and epigenetic regulation of gene expression by a class of histone deacetylase enzymes known as sirtuins. The measurement of NAD+ and its related metabolites (hereafter, the NAD+ metabolome) represents an important indicator of cellular function. A study was performed to develop a sensitive, selective, robust, reproducible, and rapid method for the concurrent quantitative determination of intracellular levels of the NAD+ metabolome in glial and oocyte cell extracts using liquid chromatography coupled to mass spectrometry (LC/MS/MS). The metabolites were separated on a versatile amino column using a dual HILIC-RP gradient with heated electrospray (HESI) tandem mass spectrometry detection in mixed polarity multiple reaction monitoring mode. Quantification of 17 metabolites in the NAD+ metabolome in U251 human astroglioma cells could be achieved. Changes in NAD+ metabolism in U251 cell line, and murine oocytes under different culture conditions were also investigated. This method can be used as a sensitive profiling tool, tailoring chromatography for metabolites that express significant pathophysiological changes in several disease conditions and is indispensable for targeted analysis.//////////////////
Follicle stages
Comment
Phenotypes
Mutations 1 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: fertile
Comment: Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Cockayne DA et al. (1998) CD38 is a membrane-associated ecto-nicotinamide adenine dinucleotide (NAD+) glycohydrolase that is expressed on multiple hematopoietic cells. The extracellular domain of CD38 can mediate the catalysis of NAD+ to cyclic adenosine diphosphoribose (cADPR), a Ca2+-mobilizing second messenger, adenosine diphosphoribose (ADPR), and nicotinamide. In addition to its enzymatic properties, murine CD38 has been shown to act as a B-cell coreceptor capable of modulating signals through the B-cell antigen receptor. To investigate the in vivo physiological function(s) of this novel class of ectoenzyme we generated mice carrying a null mutation in the CD38 gene. CD38-/- mice showed a complete loss of tissue-associated NAD+ glycohydrolase activity, showing that the classical NAD+ glycohydrolases and CD38 are likely identical. Although murine CD38 is expressed on hematopoietic stem cells as well as on committed progenitors, we show that CD38 is not required for hematopoiesis or lymphopoiesis. However, CD38-/- mice did exhibit marked deficiencies in antibody responses to T-cell-dependent protein antigens and augmented antibody responses to at least one T-cell-independent type 2 polysaccharide antigen. These data suggest that CD38 may play an important role in vivo in regulating humoral immune responses.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Nov. 27, 2019, 2:50 p.m. by: system   email:
home page:
last update: Feb. 18, 2020, 3:42 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form