NCBI Summary:
This gene encodes a DNA topoisomerase, an enzyme that controls and alters the topologic states of DNA during transcription. This enzyme catalyzes the transient breaking and rejoining of a single strand of DNA which allows the strands to pass through one another, thus relaxing the supercoils and altering the topology of DNA. The enzyme interacts with DNA helicase SGS1 and plays a role in DNA recombination, cellular aging and maintenance of genome stability. Low expression of this gene may be related to higher survival rates in breast cancer patients. This gene has a pseudogene on chromosome 22. Alternate splicing results in multiple transcript variants. Additional alternatively spliced transcript variants of this gene have been described, but their full-length nature is not known. [provided by RefSeq, Aug 2013]
General function
DNA repair, Enzyme
Comment
Cellular localization
Comment
Ovarian function
Comment
DNA topoisomerase 3 is required for efficient germ cell quality control. Dello Stritto MR et al. (2021) An important quality control mechanism eliminates meiocytes that have experienced recombination failure during meiosis. The culling of defective oocytes in Caenorhabditis elegans meiosis resembles late oocyte elimination in female mammals. Here we show that topoisomerase 3 depletion generates DNA lesions in both germline mitotic and meiotic compartments that are less capable of triggering p53 (cep-1)-dependent apoptosis, despite the activation of DNA damage and apoptosis signaling. Elimination of nonhomologous, alternative end joining and single strand annealing repair factors (CKU-70, CKU-80, POLQ-1, and XPF-1) can alleviate the apoptosis block. Remarkably, the ability of single mutants in the other members of the Bloom helicase-topoisomerase-RMI1 complex to elicit apoptosis is not compromised, and depletion of Bloom helicase in topoisomerase 3 mutants restores an effective apoptotic response. Therefore, uncontrolled Bloom helicase activity seems to direct DNA repair toward normally not used repair pathways, and this counteracts efficient apoptosis. This implicates an as-yet undescribed requirement for topoisomerase 3 in mounting an effective apoptotic response to ensure germ cell quality control.//////////////////
Expression regulated by
Comment
Ovarian localization
Oocyte, Granulosa
Comment
Follicle stages
Comment
Phenotypes
Mutations
1 mutations
Species: mouse
Mutation name: type: null mutation fertility: fertile Comment: Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan. Kwan KY et al. (2001) Targeted gene disruption in the murine TOP3beta gene-encoding DNA topoisomerase IIIbeta was carried out. In contrast to the embryonic lethality of mutant mice lacking DNA topoisomerase IIIalpha, top3beta(-/-) nulls are viable and grow to maturity with no apparent defects. Mice lacking DNA topoisomerase IIIbeta have a shorter life expectancy than their wild-type littermates, however. The mean lifespan of the top3beta(-/-) mice is about 15 months, whereas that of their wild-type littermates is longer than 2 years. Mortality of the top3beta(-/-) nulls appears to correlate with lesions in multiple organs, including hypertrophy of the spleen and submandibular lymph nodes, glomerulonephritis, and perivascular infiltrates in various organs. Because the DNA topoisomerase III isozymes are likely to interact with helicases of the RecQ family, enzymes that include the determinants of human Bloom, Werner, and Rothmund-Thomson syndromes, the shortened lifespan of top3beta(-/-) mice points to the possibility that the DNA topoisomerase III isozymes might be involved in the pathogenesis of progeroid syndromes caused by defective RecQ helicases.//////////////////