Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

RAD21-like (S. pombe) OKDB#: 5733
 Symbols: Rad21l Species: human
 Synonyms: Gm14160, Rad21l1, MeiRAD21L  Locus: 2 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment
General function Chromosome organization, DNA repair
Comment
Cellular localization Nuclear
Comment
Ovarian function
Comment
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 2 mutations

Species: mouse
Mutation name:
type: null mutation
fertility: subfertile
Comment: The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. Herrán Y et al. (2011) The cohesin complex is a ring-shaped proteinaceous structure that entraps the two sister chromatids after replication until the onset of anaphase when the ring is opened by proteolytic cleavage of its α-kleisin subunit (RAD21 at mitosis and REC8 at meiosis) by separase. RAD21L is a recently identified α-kleisin that is present from fish to mammals and biochemically interacts with the cohesin subunits SMC1, SMC3 and STAG3. RAD21L localizes along the axial elements of the synaptonemal complex of mouse meiocytes. However, its existence as a bona fide cohesin and its functional role awaits in vivo validation. Here, we show that male mice lacking RAD21L are defective in full synapsis of homologous chromosomes at meiotic prophase I, which provokes an arrest at zygotene and leads to total azoospermia and consequently infertility. In contrast, RAD21L-deficient females are fertile but develop an age-dependent sterility. Thus, our results provide in vivo evidence that RAD21L is essential for male fertility and in females for the maintenance of fertility during natural aging. //////////////////

Species: None
Mutation name:
type: null mutation
fertility: infertile - ovarian defect
Comment: Rad21l1 cohesin subunit is dispensable for spermatogenesis but not oogenesis in zebrafish. Blokhina YP et al. (2021) During meiosis I, ring-shaped cohesin complexes play important roles in aiding the proper segregation of homologous chromosomes. RAD21L is a meiosis-specific vertebrate cohesin that is required for spermatogenesis in mice but is dispensable for oogenesis in young animals. The role of this cohesin in other vertebrate models has not been explored. Here, we tested if the zebrafish homolog Rad21l1 is required for meiotic chromosome dynamics during spermatogenesis and oogenesis. We found that Rad21l1 localizes to unsynapsed chromosome axes. It is also found between the axes of the mature tripartite synaptonemal complex (SC) in both sexes. We knocked out rad21l1 and found that nearly all rad21l1-/- mutants develop as fertile males, suggesting that the mutation causes a defect in juvenile oogenesis, since insufficient oocyte production triggers female to male sex reversal in zebrafish. Sex reversal was partially suppressed by mutation of the checkpoint gene tp53, suggesting that the rad21l1 mutation activates Tp53-mediated apoptosis or arrest in females. This response, however, is not linked to a defect in repairing Spo11-induced double-strand breaks since deletion of spo11 does not suppress the sex reversal phenotype. Compared to tp53 single mutant controls, rad21l1-/- tp53-/- double mutant females produce poor quality eggs that often die or develop into malformed embryos. Overall, these results indicate that the absence of rad21l1-/- females is due to a checkpoint-mediated response and highlight a role for a meiotic-specific cohesin subunit in oogenesis but not spermatogenesis.//////////////////

Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
Recent Publications
None
Search for Antibody


created: March 18, 2020, 2:24 p.m. by: system   email:
home page:
last update: June 24, 2021, 10:30 a.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form