Stanford Home
Ovarian Kaleidoscope Database (OKdb)

Home

History

Transgenic Mouse Models

INFORGRAPHICS

Search
Submit
Update
Chroms
Browse
Admin

Hsueh lab

HPMR

Visits
since 01/2001:
176557

microRNA 152 OKDB#: 5887
 Symbols: MIR152 Species: human
 Synonyms: MIRN152, mir-152  Locus: 17q21.32 in Homo sapiens


For retrieval of Nucleotide and Amino Acid sequences please go to: OMIM Entrez Gene
Mammalian Reproductive Genetics   Endometrium Database Resource   Orthologous Genes   UCSC Genome Browser   GEO Profiles new!   Amazonia (transcriptome data) new!

R-L INTERACTIONS   MGI

DNA Microarrays
SHOW DATA ...
link to BioGPS
General Comment NCBI Summary: microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
General function RNA metabolism
Comment
Cellular localization Cytoplasmic
Comment
Ovarian function Oocyte maturation, Early embryo development
Comment Inhibition of miR-152 during In Vitro Maturation Enhances the Developmental Potential of Porcine Embryos. Gad A et al. (2020) Oocyte developmental competence is regulated by various mechanisms and molecules including microRNAs (miRNAs). However, the functions of many of these miRNAs in oocyte and embryo development are still unclear. In this study, we managed to manipulate the expression level of miR-152 during oocyte maturation to figure out its potential role in determining the developmental competence of porcine oocytes. The inhibition (Inh) of miR-152 during oocyte maturation does not affect the MII and cleavage rates, however it significantly enhances the blastocyst rate compared to the overexpression (OvExp) and control groups. Pathway analysis identified several signaling pathways (including PI3K/AKT, TGFβ, Hippo, FoxO, and Wnt signaling) that are enriched in the predicted target genes of miR-152. Gene expression analysis revealed that IGF1 was significantly up-regulated in the Inh group and downregulated in the OvExp group of oocytes. Moreover, IGF1R was significantly upregulated in the Inh oocyte group compared to the control one and IGFBP6 was downregulated in the Inh oocyte group compared to the other groups. Blastocysts developed from the OvExp oocytes exhibited an increase in miR-152 expression, dysregulation in some quality-related genes, and the lowest rate of blastocyst formation. In conclusion, our results demonstrate a negative correlation between miR-152 expression level and blastocyst rate in pigs. This correlation could be through targeting IGF system components during oocyte development.//////////////////
Expression regulated by
Comment
Ovarian localization Oocyte
Comment
Follicle stages
Comment
Phenotypes
Mutations 0 mutations
Genomic Region show genomic region
Phenotypes and GWAS show phenotypes and GWAS
Links
OMIM (Online Mendelian Inheritance in Man: an excellent source of general gene description and genetic information.)
OMIM \ Animal Model
KEGG Pathways
Recent Publications
None
Search for Antibody


created: Dec. 16, 2020, 9:23 p.m. by: system   email:
home page:
last update: Dec. 16, 2020, 9:24 p.m. by: hsueh    email:



Use the back button of your browser to return to the Gene List.

Click here to return to gene search form