gap junction protein alpha 4 | OKDB#: 99 |
Symbols: | GJA4 | Species: | mouse | ||
Synonyms: | CX37 | Locus: | 1p34.3 in Homo sapiens |
For retrieval of Nucleotide and Amino Acid sequences please go to:
OMIM
Entrez Gene
Mammalian Reproductive Genetics Endometrium Database Resource Orthologous Genes UCSC Genome Browser GEO Profiles new! Amazonia (transcriptome data) new! R-L INTERACTIONS MGI |
General Comment |
Gap junctions are aggregations of intercellular channels composed of connexins, a family of at least 13 related proteins that directly connect adjacent cells allowing the diffusional movement of ions, metabolites, and other potential signalling molecules.
NCBI Summary: This gene encodes a member of the connexin gene family. The encoded protein is a component of gap junctions, which are composed of arrays of intercellular channels that provide a route for the diffusion of low molecular weight materials from cell to cell. Mutations in this gene have been associated with atherosclerosis and a higher risk of myocardial infarction. [provided by RefSeq, Jul 2008] |
||||
General function | Channel/transport protein | ||||
Comment | Reed et al., (1993) demonstrated that CX37 can form functional cell-to-cell channels that have unique voltage-dependence and unitary conductance properties. | ||||
Cellular localization | Plasma membrane | ||||
Comment | |||||
Ovarian function | Follicle endowment, Follicle development, Oogenesis | ||||
Comment | Gap junctions are essential for murine primordial follicle assembly immediately before birth. Teng Z et al. (2015) The reserve of primordial follicles determines the reproductive ability of the female mammal over its reproductive life. The primordial follicle is composed of two types of cells, the oocyte and the surrounding pre-granulosa cells. However, the underlying mechanisms regulating primordial follicle assembly is largely undefined. In this study, we found that gap junction communication (GJC) established between the ovarian cells in the perinatal mouse ovary may be involved in the process. First, gap junction structures between the oocyte and surrounding pre-granulosa cells appear at around 19.0 dpc (days post coitum). As many as 12 gap junction-related genes were upregulated at birth, implying that a complex communication may exist between ovarian cells, because specifically silencing the genes of individual gap junction proteins, such as Gja1, Gja4 or both, has no influence on primordial follicle assembly. On the other hand nonspecific blockers of GJC, such as carbenoxolone (CBX) and 18-alpha-glycyrrhetinic acid (AGA), significantly inhibit mouse primordial follicle assembly. We proved that the temporal window for GJC establishment in the fetal ovary is from 19.5 dpc to 1 dpp (days postpartum). In addition, the expression of ovarian somatic cell (OSC)-specific genes, such as Notch2, Foxl2 and Irx3, were negatively affected by GJC blockers, whereas oocyte-related genes, such as Ybx2, Nobox and Sohlh1, were hardly affected, implying that the establishment of GJC during this period may be more important to OSCs than to oocytes. In summary, our results indicated that GJC involves in the mouse primordial follicle assembly process at a specific temporal window which needs Notch signaling cross talking.////////////////// Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries Gittens JE, et al . The gap junction proteins connexin37 and connexin43 are required for ovarian folliculogenesis in the mouse. To define their respective roles in oogenesis, chimeric ovaries containing either null mutant oocytes and wild-type granulosa cells or the reverse combination were grafted to the renal capsules of immunodeficient female mice. After three weeks, the oocytes were tested for meiotic competence and fertilizability in vitro. Ovaries composed of connexin43-deficient oocytes and wild-type granulosa cells produced antral follicles enclosing oocytes that could develop to at least the two-cell stage, demonstrating that oocytes need not express connexin43 to reach maturity. Conversely, both follicle development and oocyte maturation were impaired in ovaries containing either wild-type oocytes and connexin43-deficient granulosa cells or connexin37-deficient oocytes and wild-type granulosa cells. Thus absence of connexin43 from granulosa cells or connexin37 from oocytes is sufficient to compromise both oocyte and follicle development. Wild-type oocytes paired with connexin37-deficient granulosa cells generated antral follicles containing oocytes that developed to at least the two-cell stage. Therefore, connexin37 absence from granulosa cells need not impair fertility in mice. Dye transfer experiments revealed persistent oocyte-granulosa cell coupling in those follicles, indicating functional compensation by another connexin. The results indicate that mouse oocytes do not need to express connexin43 in order to develop into meiotically competent, fertilizable gametes, but must express connexin37 for communication with granulosa cells, a requirement for oogenesis. | ||||
Expression regulated by | |||||
Comment | |||||
Ovarian localization | Oocyte, Granulosa | ||||
Comment | Simon et al., (1997) show that connexin 37 is present in gap junctions between oocyte and granulosa cells. Connexin37 mRNA expression in in vivo and in vitro mouse oocyte. Yin BY et al. SummaryTo evaluate gene expression of Connexin37 (Cx37) in oocytes from in vitro follicles at different stages, mouse preantral follicles were isolated and cultured for 12 days in vitro. Compared with in vitro follicles, follicles grown in vivo were collected at day 14 (d14), d16, d18, d20, d22 and d24 with the same stages for gene expression of Cx37 in oocytes. Our results showed that Cx37 mRNA increased along with follicular development, reached the highest level at the onset of antrum cavity formation and decreased after antrum formation in both in vivo and in vitro mouse oocytes. However, Cx37 mRNA was significant higher (p < 0.01) in in vitro cultured oocytes than in vivo oocytes. Moreover, significantly higher levels of Cx37 mRNA were found in oocytes from in vitro disrupted follicles (p < 0.01) and non-grown follicles (p < 0.05) than those from normal follicles with a similar size. These data determine temporal gene expression of Cx37 in oocytes from follicules at different stages and indicate that the gene expression level of Cx37 in oocytes could be evaluated as a criterion to the regulatory mechanism of Cx37 in an in vitro model. | ||||
Follicle stages | Secondary, Antral, Preovulatory | ||||
Comment | |||||
Phenotypes |
POF (premature ovarian failure) |
||||
Mutations |
4 mutations
Species: mouse
Species: mouse
Species: mouse
Species: human
|
||||
Genomic Region | show genomic region | ||||
Phenotypes and GWAS | show phenotypes and GWAS | ||||
Links |
|
created: | Aug. 20, 1999, midnight | by: |
Uschi email:
home page: |
last update: | Dec. 6, 2017, 12:20 p.m. | by: | hsueh email: |
Click here to return to gene search form